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Neural network relationships between the full-scale, 
experimental hub accelerations and the componding 
pilot floor vertical vibration are studied. The present 
physics-based, quantitative effort represents an initial 
systematic study on the UH-60A Black Hawk hub 
accelerations. The NASNArmy UH-6OA Airloads 
Program flight test database was used. A "maneuver- 
effect-factor 0,'' derived using the roll-angle and the 
pitch-rate, was used. Three neural network based 
representation-cases were considered. The pilot floor 
vertical vibration was considered in the first case and the 
hub accelerations were separately considered in the 
second case. The third case considered both the hub 
accelerations and the pilot floor vertical vibration. 
Neither the advance ratio nor the gross weight alone 
could be used to predict the pilot floor vertical 
vibration. However, the advance ratio and the gross 
weight together could be used to predict the pilot floor 
vertical vibration over the entire flight envelope. The 
hub accelerations data were modeled and found to be of 
very acceptable quality. The hub accelerations alone 
could not be used to predict the pilot floor vertical 
vibration. Thus, the hub accelerations alone do not 
drive the pilot floor vertical vibration. However, the 
hub accelerations, along with either the advance ratio or 
the gross weight or both, could be used to satisfactorily 
predict the pilot floor vertical vibration. The hub 
accelerations are clearly a factor in determining the pilot 
floor vertical vibration. 

potation 

MEF Maneuver effect factor, Equation 1. 

MIMO Multiple-input, multiple-output 

MIS0 Multiple-input, single-output 
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P W  Peak, 4P pilot floor vertical vibration, 
g's 

SISO Single-input. single-output 

lntroductioq 

For helicopters, the relationships between the rotor hub 
accelerations and the fuselage vibration are nonlinear and 
involve many variables. Here, fuselage vibration is 
defined as the N/rev fuselage acceleration due to the 
main rotor, where N is the number of main rotor blades 
(presently, N = 4). For the UH-60A flight test data that 
were considered in Ref. 1, one of the conclusions was 
that the fuselage vibration trends qualitatively matched 
those of the hub accelerations. Reference 1 did not 
present any quantitative representations for the hub 
accelerations. Also, in Ref. 1, the relationships 
betwezn the hub accelerations and the fuselage 
vibrations were not quantified. 

The present study is the first systematic effort that 
considers hub accelerations in a quantitative manner, and 
attempts to identify numerical relationships between the 
hub accelerations and t?e fuelage vibrations. Also, 
this study was undertaken to obtain a better 
understanding of the basic dynamics underlying the 
main rotordependent fuselage vibration and the 
associated hub accelerations. The present study builds 
up on previous neural network studies that were 
conducted at NASA Ames in the areas of rotorcraft 
performance, acoustics, and dynamics (Refs. 2 to 8). 

Flight test data from the NASNArmy UH-60A 
Airloads Program (Refs. 9 and 10) were used in this 
study. 

Reference 4 studied the neural network based modeling 
of the UH-60A peak, 4P pilot floor vertical vibration 
(PW) for real-time applications. In Ref. 4, the peak 
value of the pilot floor vertical vibration was used so as 
to better represent time varying maneuvers, such as a 
pull-up maneuver. Compared to Ref. 4, the additional 
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considerations present in this study are the effects due to 
the hub accelerations. 

In this study, for purposes of modeling the UH-60A 
PW and the hub accelerations, two databases were 
created. The first database included only level flight 
data. The second database included data from the entire 
flight envelope, including maneuver (or unsteady) 
conditions. 

The present use of neural networks was justified because 
neural networks can perform multi-dimensional, 
nonlinear cuwe fitting. This feature is useful in the 
present study that seeks to identify smoothly varying 
relationships. The present work is considered to be a 
generic methodology and is not specific to the presently 
considered UHdoA conflapation. 

Obiect ivw 

The present neural network based representation (or 
modeling) study involving the helicopter N/rev peak, 
pilot floor vertical vibration (PVV) and the hub 
accelerations had the following four objectives: 

1. Create a neural network training database for the 
hub accelerations. The corresponding training 
database for the P W  was created in Ref. 4. 

2. Conduct exploratory studies involving the P W  and 
the advance ratio and the aircraft gross weight. 
Two databases would be used, one for level flights 
and the other for “all flights,” including maneuvers. 
For objective 2, only the P W  data contain 
maneuver effects. since neither the advance ratio nor 
the aircraft gross weight account for maneuver 
conditions. 

3. Assess the data quality of the hub accelerations and 
obtain their neural network based representations. 

4. Using the hub accelerations and flight condi6on 
parameters such as the advance ratio and gross 
weight, determine whether reasonably accurate 
analytical representations of the P W  could be 
obtained. 

pub Acceleration and Pilot Vertical 
Vibration Databases 

The source of the hub accelerometer data was the 
NASNArmy UH-60A Airloads Program flight test 
database (Refs. 9 and 10). The creation of the 
Corresponding P W  database has been described in Ref. 
4. The following flight conditions were included: level 
flights, rolls, pushovers, pull-ups, autorotations, and 
landing flares. These conditions approximate the entire 
UH-60A flight envelope. 

The UH-60A hub accelerometers were mounted on a 
triaxial block glued to the main rotor shaft 4.5 inches 
from the center of rotation (Ref. I). Three 
accelerometers (radial, tangential, and vertical) were 
used. Following Ref, 1, the tangential accelerometer 
measurements were used to present the in-plane 
response because it has a smaller centrifugal acceleration 
value than the radial sensor. 

The present study thus considered the 3P and 5P 
tangential hub accelerations and the 4P vertical hub 
acceleration. The appropriate hub acceleration values 
were taken as those corresponding to the peak P W  
(Ref. 4). Let the peak PW occur at a time t = 2. The 
appropriate hub acceleration was defined as that also 
occumng at time t = ‘t . In general, the peak-PW- 
time, ‘t was different for different maneuvers, and had to 
be individually determined. 

Maneuver Effect Factor 

The MEF, a non-dimensional parameter, was used to 
characterize helicopter maneuvers involving 
simultaneous non-zero roll-angle and pitch-rate. The 
MEF was used as an input in the MEF-related neural 
network. In the present study, the MEF was defined by 
the following equation (Ref. 4): 

Maneuver effect factor, MEF = 
[l / cos (roll-angle)] * 
[ 1 + (pitch-rate * airspeed / g) ] 

(1) 

where “g” is the acceleration due to gravity. The 
purpose of the MEF was to compactly represent 
complex maneuvers using a single, physics-based 
parameter. Depending on the reference axes system 
used, other parameters can be derived, and this would 
result in slightly different formulations. 

The number of the neural network training data points 
in the present study was over 200. These points 
represent the entire training database. Approximately 
25% of the training database involved maneuver related 
points. Here, maneuver related refers to a flight 
condition for which the maneuver effect factor MEF was 
not equal to 1. 

Basic Variations: Hub Acce lerations and 
Pilot Vertical Vibration 

Figures I4 show the variations of the flight test hub 
accelerations and the P W  versus the advance ratio. The 
data shown in Figs. 1-4 use the 200 point flight 
database. Thus, in addition to the variation in the 
advance ratio covered in the figures, overall, these data 
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involved variations in the gross weight, the RPM, the 
density ratio, the MEF. and the ascenddescent rate (and 
variations in the three control stick positions). 

Figure 1 shows the 3P tangential hub acceleration 
variation with the advance ratio. These data were 
obtained with the 3P bifilars installed on the UH-60A 
(Ref. 9). In Fig. 1. the low speed "hump" due to rotor 
wake effects can be Seen around an advance ratio of 0.09 
(approximately 40 knots). Figure 2 shows the 5P 
tangential hub acceleration variation with the advance 
ratio. Compared to the 3P hub 
1, the 5P hub acceleration data 

acceleration variation with the advance ratio. Figure 4 
shows the peak, 4P pilot floor vertical vibration, P W ,  
versus the advance ratio (Ref. 4). 

PJeural Network ADDroach 

To accurately capture the required functional 
dependencies, the neural network inputs must be 
carefully selected and account for all important physical 
traits that are specific to the application. The important 
attributes of a neural network are its type (radial-basis 
function network or back-propagation network, etc.) and 
its complexity (i.e-, the number of processing elements 
(PES) and the number of hidden layers). The present 
overall neural network modeling approach (Refs. 2-8) 
consists of first determining the best type of neural 
network to be used and then simplifying the network as 
much as is practical. 

Determining the best type of neural network usually 
involves selecting either a radial-basis function (RBE) 
or a back-propagation network. In the present study, 
the back-propagation type of network was used. 

Simplifying the network involves reducing the number 
of PES and in a few cases, the number of hidden layers. 
The number of PES required depends on the specific 
application. The determination of the appropriate 
number of PES is done by s m i n g  with a minimum 
number of PES. Additional PES are added to improve 
neural network performance by reducing the RMS error 
between the test data and the neural network predictions. 
Typically, five PES are added at each step in this 
process. Adding two or three PES at a time fine-tunes 
the neural network. 

If the correlation plot, comparing measured and predicted 
values, shows only small deviations from the 45-deg 
reference line, the neural network has produced an 
acceptable representation of the subject test data. Ifthe 

plot shows points well off of the 45-deg line, poor 
quality test data may exist in the database. A detailed 
examination of the subject test database is then required 
to identify the source(s) of the errors associated with 
these test data. 

For notation used in this paper, a neural network 
arcf;;tecture such as "4-25-5-1" refers to a neural 
network with four inputs, twenty five processing 
elements (PES) in the first hidden layer, five PES in the 
second hidden layer, and one output. 

+% - 

The application of neural networks to full-scale 
helicopter flight test vibration and hub accelerations data 
was conducted using the neural networks package 
NeumlWorks Pro WPLUS (version 5.2) by Neuralware 
(Ref. 11). The present neural network RMS error was 
dimensionless and based on the squares of the errors for 
each processing element (PE) in the output layer. 
Generally, the RMS error was characterized by a 
monotonic decrease with the number of training 
iterations (Ref. 7). Also, any large differences in the 
magnitudes of the neural network variables were 
mitigated by appropriate scaling. In the present 
application, the cost function used in minimizing the 
RMS error had equally weighted individual 
contributions. 

Three basic studies, taken up in order of increasing 
complexity, were conducted, and are described as 
follows: 

i) .  An initial exploratory study was conducted to 
determine the relationships between the P W  and 
the advance ratio and the gross weight. Two sets of 
results, one for level flight and the other involving 
the entire database that included maneuver effects 
were obtained. 

ii). A hub accelerations representation study was 
conducted using the three neural network input sets 
created in Ref. 4. These three input sets are listed 
later (Hub Accelerations Representation). The 
entire database was used. Results pertaining to 
only one of the input sets, namely, the MEF-input 
set, are presented in this paper. 

iii). A study was conducted on using the hub 
accelerations along with the advance ratio and the 
gross weight to model the PVV. The entire 
database was used. The results from this third and 
final study would help determine whether the hub 
accelerations could be used to obtain the PVV. 

Results 

Pilot Vertical Vibration J?:XD~ m o w  s tudv 

3 



* 

This exploratory study had two parts. The first part 
involved level flight conditions and the second part 
involved the entire database including maneuver 
conditions. In this exploratory study, the P W  was the 
single neural network output. 

The first part of this exploratory study involved level 
flight conditions, with varying gross weight and a 
constant RPM. Approximately 80 points were 
involved. Figures 5-7 show the results for these level 
flight cases. 

All-Hi~hts E ntire Daub- 

Figure 5 shows the correlation plot from a SISO 1-10- 
5-1 back-propagation neural network in which the 
advance ratio was the single input. The back- 
propagation network was trained for 5 million iterations 
with a final RMS error of 0.17. There does not appear 
to be a unique relationship between the advance ratio 
and the P W .  

Figure 6 shows the correlation plot from a SISO 1-10- 
5- 1 back-propagation neural network in which the gross 
weight was the single input. The back-propagation 
network was trained for 5 million iterations with a final 
RMS error of 0.15. Again, not surprisingly, there does 
not appear to be a unique relationship between the gross 
weight and the PW.  

Figure 7 shows the correlation plot from a MISO 2-10- 
5-1 back-propagation neural network in which the 
advance ratio and the gross weight were the two inputs. 
The back-propagation network was trained for 1 million 
iterations with a final RMS error of 0.10. Figure 7 
shows that the advance ratio and the gross weight could 
represent the P W  for level flight conditions. The 
trained neural network, Fig. 7, can typically predict the 
PVV to within +/- 0.05 g’s, knowing only the advance 
ratio and the gross weight. 

The second part of this exploratory study involved all 
flight conditions considered in Ref. 4. The entire 
database was used (200 points, including maneuvers). 
Figures 8-10 show the corresponding results. 

Figure 8 shows the correlation plot from a SISO 1-10- 
5-1 back-propagation neural network in which the 
advance ratio was the single input. The back- 
propagation network was trained for 5 million iterations 
with a final RMS error of 0.24. There does not appear 
to be a unique relationship between the advance ratio 
and the P W .  

weight was the single input. The back-propagation 
network was trained for 5 million iterations with a final 
RMS error of 0.25. There does not appear to be a 
unique relationship between the gross weight and the 
PVV. 

Figure 10 shows the correlation plot from a MISO 2- 
10-5-1 back-propagation neural network in which the 
advance ratio and the gross weight were the two inputs. 
The back-propagation network was trained for 5 million 
iterations with a final RMS error of 0.1 1. Figure 10 
shows that the advance ratio and the gross weight can 
reasonably predict the P W  for the entire flight 
database, maneuvers included. Compared to the entire 
database correlation shown in Fig. 10, the level flight 
correlation shown in Fig. 7 is “cleaner.” The good 
correlation seen in Fig. 10 is encouraging, even though 
the neural network inputs (advance =ti0 and gross 
weight) do not account for maneuver effects. 

For completeness, an existing correlation result based 
on a more complex physical model that accounts for 
maneuver effects (and other effects noted below) is 
shown in Fig. 11, taken from Ref. 4. Figure 11 shows 
the correlation plot from a MISO 6-10-5-1 back- 
propagation neural network. The back-propagation 
network was trained for 4 million iterations with a final 
RMS’error of 0.07. The six inputs were as follows: the 
advance ratio, the gross weight, the RPM, density ratio, 
the MEF, and the ascentldescent rate. In Ref. 4, it was 
concluded that the Fig. 1 1 representation using the 
MEF was the best representation in terms of modeling 
an unsteady maneuver such as a pull-up. ‘Figure 12, 
also from Ref. 4, shows the successful, quasi-static 
modeling of the unsteady P W  for a pull-up maneuver 
at 120 knots. Such fidelity in predicting the pilot floor 
vertical vibrations shows considerable promise in using 
neural networks to obtain the UH-60A fuselage 
vibrations. 

Hub Accelerations Remesentadon 

The quality of the hub accelerations flight test data was 
assessed and their numerical representations were 
obtained. Three neural network databases were created 
to obtain the present three representations of the hub 
accelerations. The entire database was used (200 points, 
including maneuvers). The three input lists are given as 
follows: 

Input List 1: The advance ratio, the RPM, the density 
ratio, the three pilot control stick positions, and the 
ascent/descent rate (7 inputs). 

Input List 2: The Input List 1 above, with the gross 
weight additionally included (8 inputs). 

Figure 9 shows the correlation plot from a SISO 1-10- 
5-1 back-propagation neural network in which the gross 

4 



Input List 3: The Input List 2 above with the three 
pilot control stick positions removed, and with the 
maneuver effect factor, MEF, additionally included (6 
inputs). 

Results were obtained using all three input sets. This 
paper contains results using the third input set above 
since this gave the best results for unsteady maneuver 
conditions. Figures 13-15 show the correlation plots 
presently obtained using the MEF approach. The 
correlation plots in Figs. 13-15 were obtained from a . 
MIMO 6-25-20-3 back-propagation neural network. 
The three neural network outputs were as follows: the 
3P and 5P tangential hub accelerations and the 4P 
vertical hub acceleration. The back-propagation 
network was trained for 3 million iterations with a final 
RMS error of 0.06. The figures show that the error- 
band for the hub accelerations was +/- 0.05 g’s. 

Overall, the hub acceleration flight test “data quality” 
was assessed as being very acceptable (Figs. 13-15). 
There were no identifiable poor quality data points such 
as that discussed earlier (Neural Network Approach). As 
noted in Ref. 2, the’analyst should not solely reIy on 
the neural network based correlation to eliminate poor 
quality test data. The present process does, however, 
contribute to data assessment. Finally, the Fig. 13-15 
results imply that for the UH-mA, numerical 
relationships (the identification model) relating the hub 
accelerations to the flight condition parameters have 
been obtained. 

Pelationshim Between Hub Accelerations and 
Pilot Vertical Vibration 

The objective was to represent the PVV using the 3P 
and 5P tangential hub accelerations and the 4P vertical 
hub acceleration as the three “core” inputs. Four cases 
were created, with their inputs listed as follows: 

Case 1 inputs: the three hub accelerations (3 inputs). 

Case 2 inputs: the three hub accelerations and the 
advance ratio (4 inputs). 

Case 3 inputs: the three hub accelerations and the gross 
weight (4 inputs). 

Case 4 inputs: the three hub accelerations, the advance 
ratio and the gross weight (5 inputs). 

The P W  was the single neural network output, and the 
entire database was used (200 points, including 
maneuvers). 

Figures 16- 19 show the correlation plots obtained using 
the four input sets given above. Figure 16 shows the 
cornlation plot from a MISO 3-10-5-1 back- 

propagation neural network with the case 1 inputs (the 
three hub accelerations). This case was difficult to train 
(the training error was always high) and consequently, 
the number of iterations was varied to determine the 
network with the smallest error. Figure 16 shows the 
results with the back-propagation network trained for 3 
million iterations with a final R M S  error of 0.18, the 
smallest error obtainable. For this case, increasing the 
number of iterations to 5 million (and subsequently, to 
6 million) resulted in a slightly larger RMS error, 0.20. 
Only the 3-million iteration results are reported in this 
paper. Figure 16 shows that there does not appear to 
exist a unique relationships between the hub 
accelerations and the PVV. As such, it can be 
suggested that the hub accelerations contain some basic 
information that depends on the flight condition. 

Figure 17 shows the correlation plot from a MISO 4- 
10-5-1 back-propagation neural network with the case 2 
inputs (the three hub accelerations and the advance 
ratio). The back-propagation network was trained for 5 
million iterations with a final RMS error of 0.1 1. 
Figure 17 shows that the hub accelerations and the 
advance ratio could represent the P W .  The Fig. 17 
correlation is very encouraging because it appears that 
the physics of the all-airspeeds-behavior of the P W  is 
being captured by the advance ratio (in combination 
with the hub accelerations). 

Figure 18 shows the correlation plot from a MIS0 4- 
10-5- 1 back-propagation neural network with the case 3 
inputs (the three hub accelerations and the gross 
weight). The back-propagation network was trained for 
5 million iterations with a final RMS error of 0.10. 
Figure 18 shows that the hub accelerations and the 
gross weight could represent the P W .  Unlike the 
advance ratio used in obtaining the Fig. 17 results, the 
gross weight used in obtaining the Fig. 18 results has 
very little or no physical significance. Thus, the gross 
weight may have a secondary meaning as a unique 
“identifief that helps in neural network training. The 
hub accelerations themselves are likely to contain basic 
information that when combined with an appropriate 
identifier’can produce an acceptable correlation. 

Figure 19 shows the correlation plot from a MISO 5- 
10-6-1 back-propagation neural network with the case 4 
inputs (the three hub accelerations along with the 
advance ratio and the gross weight). The back- 
propagation network was trained for 5 million iterations 
with a final RMS error of 0.08. Figure 19 shows that 
the hub accelerations along with the advance ratio, and 
the gross weight could represent the PW. Compared 
to the Fig. 17 correlation (involving the hub 
accelerations and the advance ratio), the Fig. 19 
correlation is not surprising. This is because the hub 
accelerations are likely to contain a substantial amount 
of basic information and only a minimum amount of 

5 



additional information (such as the advance ratio, etc.) is 
required to produce neural network based representations. 
Also, the correlation shown in Fig. 11 uses the 
maneuver effect factor MEF whereas the correlation 
shown in Fig. 19 uses the hub accelerations (along with 
the advance ratio and the gross weight). Both 
correlation results were obtained such that they fell 
within a +/- 0.05 g's error band and thus are comparable 
to each other. Hence, it can be suggested that the hub 
accelerations contain maneuver effects information 
reflecting load factor effects. 

Selected results are shown in Table 1 in numerical form 
to show typical neural network predictions for constant 
flight conditions. The test PVV's for four flight 
conditions and the corresponding neural network based 
P W s  are shown in Table 1. The neural network 
models for which the predictions were obtained are noted 
in Table 1. These models are as follows: the advance 
ratio and gross weight model (Fig. IO), the Ref. 4 MEF 
model (present Fig. 1 I), and the hub accelerations along 
with advance ratio and the gross weight model (Fig. 
19). The present neural network based models were 
accurate to within +/- 0.03 g's for high-speed level 
flight, descent, climb, and a constant turn flight 
condition. Table 1. The Ref. 4 model that used the 
MEF and the present model that used the hub 
accelerations along with advance ratio and the gross 
weight gave the best P W  predictions. 

Conclusions 

Full-scale, flight test based peak, 4P pilot floor vertical 
vibration (PW) and the corresponding hub accelerations 
were considered in this study for modeling purposes. 
The quality of the hub accelerations data was assessed. 
The present physics-based, quantitative effort represents 

' 

three input lists used in modeling the hub accelerations 
were the same as those associated with the three 
databases created in Ref. 4. Three sets of hub ' 

accelerations representation results were thus obtained. 
The present paper contains results obtained using one of 
the three input lists that was shown in Ref. 4 to give 
the best results for a maneuver or unsteady flight 
condition (specifically, a pull up). Thus, the hub 
accelerations results reported in this paper were based on 
the above maneuver effect factor input list: the advance 
ratio, the gross weight, the RPM. the density ratio, the 
MEF, and the ascenvdescent rate. 

In the third and final case, the relationships between the 
hub accelerations and the P W  were considered. It was 
found that the hub accelerations alone could not 
represent the P W .  Thus, the hub accelerations alone 
do not drive the P W .  The hub accelerations, along 
with either the advance ratio or the gross weight or 
both, could be used to represent the P W .  The hub 
accelerations are clearly a factor in determining the 
PVV. 

It appears from the present study that the hub 
accelerations are likely to contain a substantial amount 
of important information that can be used to model 
helicopter vibration. For example, the hub 
accelerations may contain maneuver effects information 
reflecting load factor effects. 

1. 

the irst  systematic study iniolving hub accelerkions. 

were as follows: level flights, rolls, pushovers, pull- 
ups, autorotations, and landing flares. A step-by-step 
approach in constructing the individual "example" or 
"test" cases was followed in this study. Basically, three 
"test" cases were considered. 

The flight conditions considered in the present study 2. 

In the first case, the P W  was considered by itself for 
modeling. Level flight conditions and those including 
maneuvers were separately considered. It was found that 
neither the advance ratio nor the gross weight alone 
could be used to represent the P W .  However, the 

represent the PVV of virtually the entire UH-60A 
Airloads Program database. 

3. 

advance ratio and the gross weight could be used to 4. 

In the second case, the three hub accelerations were 
considered and it was determined that the quality of the 

accelerations data were successfully modeled. Here, the 
hub accelerations data was very acceptable. The hub 5 .  
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Table 1. Neural Network Based Predictions of Pilot Floor Vertical Vibration, PVV, g's 

Flight Condition Test Advance Ratio + Maneuver-Effect- Hub Accels. + Advance- 
Gross Weight . Factor, Ref. 4 Ratio + Gross Weight 

(Fig. 10) (Fig. 11) (Fig. 19) 

Level flight, 135 knots 0.10 0.10 

Descent, 160 knots 0.25 0.22 

~~ 

0.09 

0.24 

0.09 

0.25 

Climb, 02 knots 0.12 0.09 

Turn, 45 deg, 120 knots 0.13 0.10 

0.12 

0.13 

0.13 

0.14 
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Fig. 1. UH-60A 3P tangential hub acceleration variation with advance ratio. 
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Fig. 2. UH-60A 5P tangential hub acceleration variation with advance ratio. 
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Fig. 3. UH-60A 4P vertical hub acceleration variation with advance ratio. 
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Fig. 4. UH-60A peak, 4P pilot floor vertical vibration, PVV, variation 
with advance ratio (Ref. 4). 
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Fig. 5. PVV correlation using advance ratio, level flight. 
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Fig. 6. PVV correlation using gross weight, level flight. 
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Fig. 7. PVV correlation using advance ratio and 
gross weight, level flight. 
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Fig. 8. PVV correlation using advance ratio. 
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Fig. 9. PVV correlation using gross weight. 
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Fig. 10. PVV correlation using advance ratio and gross weight. 
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Fig. 11. PVV correlation using maneuver e€fect factor, MEF. 
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Fig. 12. Quasi-static prediction of PVV using MEF, unsteady pull-up (Ref. 4). 
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Fig. 13. 3P tangential hub acceleration correlation 
using maneuver effect factor. . 
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Fig. 14. 5P tangential hub acceleration correlation 
using maneuver effect factor. 
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Fig. 15. 4P vertical hub acceleration correlation 
using maneuver effect factor. 
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Fig. 16. PVV correlation using hub accelerations. 
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Fig. 17. PVV correlation using hub accelerations and advance ratio. 
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PVV correlation using hub accelerations and gross weight. 
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Fig. 19. PVV correlation using hub accelerations 
along with advance ratio, and gross weight. 
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